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1. Introduction

The pyrokinin/pheromone biosynthesis activating neuropep-
tide (PK/PBAN) family of peptides plays a multifunctional role in
the physiology of insects. In 1986 the first member of the family,
leucopyrokinin (LPK), was isolated from the cockroach Leucophaea

maderae [12] with over 30 members of this peptide class identified
thereafter. All family members share the common C-terminal
pentapeptide FXPRL-amide (X = S, T, G or V) and include
subfamilies such as PKs, myotropins (MTs), PBAN, diapause
hormone (DH), melanization and reddish coloration hormone
(MRCH), pheromonotropin (PT), as well as pheromonotropic b and
g peptides derived from the cDNA of moths [2,26,27]. The PK/PBAN
family has been shown to stimulate sex pheromone biosynthesis in

moths [2,26,27,29], and mediate critical functions associated with
feeding (gut contractions) [19,30], development (egg diapause,
pupal diapause and pupariation) [13,20,25,35,36], defense, molt-
ing and development (melanin biosynthesis) [4,15] in a variety of
insects. The peptides do not exhibit species specificity and
experiments have shown that all of the functions listed above
can be stimulated by more than one peptide [1,6,10,26,27], and
that the C-terminal pentapeptide common to the PK/PBAN
neuropeptide class retains activity in each of the disparate
functions. The functional diversity of the PK/PBAN family raises
many questions regarding the mechanisms by which these
neuropeptides operate and structural features PK/PBAN ligands
hold in common during interaction with the receptors associated
with the wide variety of physiological processes enumerated
above.

In previous work, a highly rigid cyclic PK/PBAN analog
cyclo[Asn1]LPK (cyclo[NTSFTPTL]), featuring a trans-Pro, type I b-
turn, was determined to retain significant bioactivity in several
PK/PBAN bioassays, including hindgut contractile (cockroach L.

maderae) [23], oviduct contractile (cockroach L. maderae) [22],
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pheromonotropic (silk worm Bombyx mori) [21], egg diapause
induction (silk worm B. mori) [22], and pupariation (flesh fly
Neobelieria bullata) [36] assay systems. These results are consistent
with the suggestion that a trans-oriented Pro and the type I b-turn
structure holds broad significance for many physiological func-
tions elicited by the PK/PBAN family of peptides.

In this manuscript, we seek definitive evidence of the
importance of a trans-oriented Pro for the whole spectrum of
PK/PBAN bioactivities by incorporating an (E)-alkene, trans-Pro
isostere (Ser-C[(E)-CH C]Pro), that locks in the trans-Pro orienta-
tion, into a PK/PBAN C-terminal hexapeptide analog and evaluating
it in four different PK/PBAN bioassays; pheromone biosynthesis in
the moth H. peltigera, melanization in the Egyptian cotton leaf
worm S. littoralis, pupariation in the fleshfly, N. bullata, and hindgut
contraction in the cockroach L. maderae. The study further
evaluates whether the (E)-alkene, trans-Pro isostere could
represent a scaffold with which to design pseudopeptide and/or
nonpeptide PK/PBAN mimetic analogs that may disrupt a range of
critical PK/PBAN processes in pest insects.

2. Materials and methods

The PK/PBAN truncated analog 1559 was synthesized as
described previously [18].

2.1. Synthesis of Fmoc-Ser(OTBDMS)C[(E)-CH C]Pro-OH

The protected motif Fmoc-Ser-C[(E)-CH C]Pro-OH (TBDMS =
tert-butyldimethylsilyl; C indicates that the following peptide
linkage features a peptidomimetic modification: the nature of this
modification is provided in the bracket; E = trans) was synthesized
as previously described by Wang et al. [33,34]. Fmoc-Ser-
C[(E)CH C]Pro-OH (465 mg, 1.12 mmol) and imidazole
(381 mg, 5.60 mmol) were dissolved in DMF (4.0 ml), and
TBDMSCl (422 mg, 2.80 mmol) was added. The mixture was
stirred for 16 h, and then NH4Cl (20 ml) was added. The mixture
was stirred for an additional 50 min, and then diluted with EtOAc
(30 ml), washed with NH4Cl (2� 10 ml), dried with MgSO4,
and concentrated. Chromatography on silica gel with 0.1% acetic
acid/30% EtOAc/hexanes gave 450 mg (76%) of Fmoc-Ser-
C[(E)CH C]Pro-OH as a colorless foam. m.p. 62–63 8C. 1H NMR
(DMSO-d6) d 7.88 (d, J = 7.4, 2H), 7.68 (d, J = 7.4, 2H), 7.41 (t, J = 7.5,
2H), 7.31 (t, J = 7.2, 2H), 7.28 (d, J = 8.5, 1H), 5.37 (d, J = 7.6, 1H),
4.27 (m, 2H), 4.16 (m, 2H), 3.50 (dd, J = 10.1, 6.7, 1H), 3.40 (dd,
J = 9.9, 6.7, 1H), 3.17 (t, J = 7.1, 1H), 2.35 (m, 1H), 2.26 (m, 1H), 1.80
(m, 3H), 1.53 (m, 1H), 0.82 (s, 9H), �0.01 (d, J = 2.8, 6H). 13C NMR
(DMSO-d6) d 175.2, 156.2, 144.6, 144.5, 141.3, 128.1, 127.6, 125.8,
121.3, 120.7, 65.9, 65.3, 53.1, 49.6, 47.3, 30.1, 29.7, 26.3, 25.0, 18.5,
�4.8,�4.9. Anal. Calcd. for C30H39NO5Si: C, 69.06; H, 7.53; N, 2.68.
Found: C, 68.98; H, 7.62; N, 2.70.

2.2. Pseudopeptide PK-Etz synthesis

The peptidomimetic analog, Ac-Tyr-Phe-Ser-C[(E)-CH C]Pro-
Arg-Leu-NH2 (PK-Etz) was synthesized manually by the solid-
phase method, using the Fmoc-strategy and starting from 0.1 mM
Rink amide resin (Novabiochem, 0.47 mM/g). The Fmoc protecting
group was removed by 20% piperidine in DMF and the resin and
later on the growing peptide-resin was washed with DMF, the
MeOH and DCM. A fivefold excess of the respective Fmoc-amino
acids was activated in situ using HBTU (0.9 equiv.)/HOBt (1 equiv.)
in NMP and coupling reactions were base catalyzed with collidine.
Amino acid side-chain protecting groups were TBDMS for Tyr and
Ser(OTBDMS)C[(E)-CH C]Pro and Pbf for Arg. The synthesis of
enantiomerically pure Fmoc-Ser(OTBDMS)C[(E)-CH C]Pro-OH is
described above. The coupling of this Ser-trans-Pro isostere was

mediated by HATU/HOAt instead of HBTU/HOBt. The completeness
of each coupling reaction during synthesis was monitored by the
Kaiser test. A second coupling was performed when the test was
found positive. Cleavage of the peptide from the resin with side-
chain deprotection was performed by treatment with TFA:H2O:TIS
(95.5:2.5:2.5, v/v/v, 10 ml/g peptide-resin) for 1.5 h. The cleaved
peptide was precipitated with 20 volumes of diethyl ether, filtered,
washed successively with more ether and air-dried. The resulting
crude peptide was extracted with water and lyophilized (Fig. 1).

The peptidomimetic analog was purified on a Waters C18 Sep
Pak cartridge, and a Delta-Pak C18 reverse-phase column
(8 mm � 100 mm, 15 mm particle size, 100 Å pore size) on a
Waters 510 HPLC controlled with a Millennium 2010 chromato-
graphy manager system (Waters, Milford, MA) with detection at
214 nm at ambient temperature. Solvent A = 0.1% aqueous
trifluoroacetic acid (TFA); Solvent B = 80% aqueous acetonitrile
containing 0.1% TFA. Conditions: initial solvent consisting of 20% B
was followed by the Waters linear program to 100% B over 40 min;
flow rate, 2 ml/min. Delta-Pak C18 retention time: tR = 11.3 min.
Amino acid analysis was carried out under previously reported
conditions [24] and used to quantify the peptides and to confirm
identity, leading to the following analysis: F[1.0], L[0.9], R[0.8],
Y[1.0]. The identities of the peptide analogs were confirmed via
MALDI-MS on a Kratos Kompact Probe MALDI-MS machine (Kratos
Analytical, Ltd., Manchester, UK) with the presence of the
molecular ion 806.4 [MH+].

2.3. Pheromonotropic bioassay

The pheromonotropic bioassay was performed with H. peltigera

as described previously [3]. Stimulatory (e.g., agonistic) activity of
the PK-Etz and the LPK derived parent peptide 1559 was
determined by monitoring their ability to induce sex pheromone
biosynthesis at 1, 10, 100 pmol and 1 nmol. Females injected with
1 pmol PBAN served as a reference for stimulatory activity. The
pheromone content in buffer-injected moths did not exceed 10
ng/female. The pheromone glands were excised 2 h post-injection
and sex pheromone was extracted and quantified by capillary gas
chromatography as described previously [3]. All experiments were
performed with 9–10 females per treatment.

2.4. Melanotropic bioassay

The melanotropic bioassay was performed as described
previously [6]. Melanotropic stimulatory activity of the PK-Etz
or the LPK derived parent peptide 1559 was determined by
evaluating their ability to induce cuticular melanization in larvae
at 1, 10, 100 pmol and 1 nmol. Larvae injected with 5 pmol PBAN

Fig. 1. Structure of the analog PK-Etz (Ac-Tyr-Phe-Ser-C[trans-CH C]Pro-Arg-

Leu-NH2), containing an (E)-alkene, trans-Pro isostere (‘Etzkorn’). In this motif, the

peptide bond that binds the amino group of the Pro is locked into a trans orientation

by replacement with a double bond, which lacks the ability to rotate between trans

and cis orientations as does a normal peptide bond [33,34].
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served as a reference for stimulatory activity and those injected
with 50 mM HEPES, pH 7.6 served to determine the basal cuticular
melanization of the ligated insects. Each experiment also involved
analysis of the intensity of the melanized area in untreated and
ligated larvae. The cuticular melanization was quantified as the
ratio between the optical density and the scanned cuticular area (in
millimeters) and was compared between control and experimental
animals. All experiments were performed with 8–10 larvae per
treatment.

2.5. Pupariation bioassay

The test was performed as described by Žd’árek [36]. Briefly, the
tested material was injected at doses of 0.5, 5, 50 and 500 pmol into
fleshfly larvae (N. bullata) at the early-RS stage that previously had
been immobilized by chilling on ice. Control larvae were injected
with water only. After removal from the ice the injected larvae were
kept at 25 8C in Petri dishes lined with dry filter paper, and the time
of retraction (R), contraction (C) and tanning (T) was recorded. At the
end of the RS stage the larva stops crawling and irreversibly retracts
the first three front segments with the cephalopharyngeal apparatus
(‘the mouth hooks’) (retraction—R); it then contracts longitudinally
to become the barrel-shaped puparium (contraction—C) and its
surface becomes smooth by shrinking of the cuticle, until it attains
the shape of the ‘white puparium’ (WP). Some 50–60 min after C the
WP starts to change color by phenolic tanning of the cuticle (T) and
turns to an ‘orange puparium’. The effects of LPK, the LPK C-terminal
pentapeptide and/or PK-Etz were expressed as a difference between
the control and experimental larvae, in the mean time between the
occurrences of C and T. Eight to 12 larvae in each group were
injected, and the test was repeated four times. Larvae were injected
by means of a disposable calibrated glass capillary with a pointed tip.
The volumes of injected solution ranged from 0.5 to 1.0 ml. The
definition of a threshold dose was the dose that demonstrated
differences of at least 25% from the control group in R, C and T in each
of the four trials.

2.6. Myotropic bioassay

Hindguts of adult L. maderae cockroaches were separated from
the central nervous system (CNS) and dissected [12], suspended in
a 5 ml chamber, and prepared for recording as previously
described [9]. Threshold concentrations are determined by adding
a known quantity of analog (dissolved in 0.5 ml of bioassay saline)
to the bioassay chamber containing the hindgut. The threshold
concentration is defined as the minimum concentration of analog
required to elicit an observable change in the frequency (50%) or
amplitude (10%) of contractions within 1 min and sustained for
3 min. Threshold concentrations would be obtained from mea-
surements of three to five cockroach hindguts on consecutive days.

2.7. Statistical analysis

The results of the pheromonotropic and melanotropic assays
were subjected to one-way ANOVA. All data are presented as
mean � standard error mean. The significance of differences among
means was evaluated withthe Tukey–KramerHSD (honestlysignificant
difference) test at P < 0.05. All statistical analyses were calculated using
JMP version 5.1.2, 2004�, SAS Institute Inc., Cary, NC, USA.

3. Results

3.1. Pheromonotropic bioassay

The results of a dose response evaluation of the PK/PBAN analog
PK-Etz, containing the (E)-alkene trans-Pro isosteric component, a

parent peptide 1559, and PBAN1-33 as agonists in the in vivo

pheromonotropic assay in H. peltigera are illustrated in Fig. 2.
While less potent than the full-length PBAN 1-33, PK-Etz
nonetheless matches the potency of the parent peptide 1559 at
1, 100 and 1000 pmol, and the difference at 10 pmol is not
statistically significant. Both PK-Etz and 1559 demonstrate an
equal response at 100 pmol and the data suggests that the
threshold response is between 10 and 100 pmol. It should be noted
that C-terminal pentapeptide core fragment-analogs in which the
variable X position is occupied by either an S or a T show similar
pheromonotropic activity in the heliothine moths Helicoverpa zea

[1].

3.2. Melanotropic bioassay

In the melanotropic bioassay in S. littoralis, the analog PK-Etz is
an extremely potent agonist capable of stimulating melanin
formation at all tested concentrations (Fig. 3). Indeed, PK-Etz
matches the potency of the natural elicitor PBAN1-33, and exceeds
the maximal response (efficacy) by a factor that ranges between

Fig. 2. In vivo dose–response agonist pheromonotropic activity of PK-Etz, the parent

peptide 1559 and PBAN in H. peltigera females. Activity is expressed as the ratio (as a

percentage) between the pheromone content elicited by the injection of each of the

peptides at the listed doses and by PBAN at 1 pmol (defined as 100%) � SEM of 9–10

samples. Statistical analysis compared differences between the pheromonotropic

agonistic activities of the tested peptides. Different letters indicate significant

differences in activity at P < 0.05.

Fig. 3. In vivo dose–response agonist melanotropic activity of PK-Etz, the parent

peptide 1559 and PBAN in S. littoralis larvae. Activity is expressed as the ratio (as a

percentage) between the extents of melanization elicited by the injection of each of

the peptides at the listed doses and by PBAN at 5 pmol (defined as 100%) � SEM of

8–10 samples. Statistical analysis compared differences between the melanotropic

agonistic activities of the tested peptides. Different letters indicate significant

differences in activity at P < 0.05.
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1.5 and 1.9 at doses of 100 pmol and 1 nmol. PK-Etz also matches
the potency of the fragment-analog 1559. The efficacy of 1559 is
not statistically different from that of PBAN1-33 (Table 1).

3.3. Pupariation and myotropic bioassays

The results of an evaluation of trans-Pro isosteric analog PK-
Etz in the larval pupariation assay of N. bullata and isolated
hindgut contraction assay of the cockroach L. maderae are
summarized in Table 2. The PK LPK (Lem-PK) is native to the L.

maderae cockroach and also the first PK sequence used to establish
the pupariation acceleration effect in larvae of the flesh fly N.

bullata and is used as the control peptide. Analog PK-Etz is
equipotent with both LPK and its C-terminal pentapeptide
fragment-analog [4–8] LPK in the pupariation bioassay, demon-
strating a potent threshold dose of 0.3 pmol. In the L. maderae

hindgut contractile bioassay, PK-Etz is equipotent with the LPK C-
terminal pentapeptide ([4–8] LPK), with a threshold concentra-
tion of 2 � 10�9 M, and is statistically equivalent to the potency of
the natural LPK (1 � 10�9 M) (Table 2).

4. Discussion

The C-terminal pentapeptide FXPRLa is highly conserved and
thus, shared by PBAN and other pyrokinins. This pentapeptide
has further been identified as the active core in pheromono-
tropic bioassays (X = S) [2,16,25,27] and in an expressed PBAN
receptor assay from the moth Heliothis virescens [14] and S.

littoralis [37], although the C-terminal hexapeptide YFXPRLa
(X = S) exhibits much greater potency [3,11]. In the pheromo-
notropic assay of the heliothine insect H. zea the core PK/PBAN
C-terminal pentapeptide sequence exhibits similar potency
whether the variable X position is occupied by an S or a T
[1]. The C-terminal pentapeptide common to the PK/PBAN class
has also been found to retain significant activity in other
bioassays, such as melanotropic, pupariation and hindgut
myotropic preparations.

Several turn conformations have been proposed for the core
pentapeptide region based on NMR experiments of the pyrokinin
PBAN and/or core analogs in solution. Using the C-terminal
hexapeptide PBAN analog [D-Phe29 [28–33]] PBAN in an NMR
solution conformation study, Wang et al. reported that it adopts a
type II b-turn. However, the authors concluded that this

observation may result from conformational averaging of a type
I b-turn and an extended structure [32]. Clark and Prestwich
investigated the solution conformation of the natural HezPBAN
and reported a type I0 b-turn with a cis-Pro in the C-terminal
pentapeptide region [8]. Among drawbacks to the studies
conducted by Wang et al. and Clark and Prestwich are that they
were investigating highly flexible structures and NMR experiments
were conducted in solutions incorporating organic solvents, which
can promote formation of secondary structure that is not
necessarily relevant to the conformation adopted at the receptor
site. Nachman et al. conducted a conformational study of the rigid,
cyclic PK/PBAN analog cyclo[NTSFTPRL] (cyclo[Asn1]LPK) in aqu-
eous solution containing no organic solvents using a combination
of NMR spectroscopic and molecular dynamics calculations
[21,23]. The specific conformation of this constrained, cyclic
analog in aqueous solution was shown to be extremely rigid,
featuring a trans-oriented Pro in the second position of a type-I
b-turn over residues Thr-Pro-Arg-Leu within the core region. A
trans-Pro is a defining characteristic of a type I b-turn [7]. The very
large (for Thr-2, Thr-5, and Leu-8) and very small (for Ser-3 and
Arg-7) coupling constants found indicated that the backbone of
cyclo[Asn1]LPK was rigidly held in a single or a few closely related
conformations, since conformational averaging would have given
averaged, intermediate values [23]. Recently, a structure for the
HezPBAN receptor has been predicted using the X-ray diffraction
structure of the GPCR rhodopsin as a template; and this calculated
structure has been used to build a binding model for the HezPBAN
C-terminal hexapeptide fragment adopting each of the three
proposed b-turn types. The model clearly supports the presence of
a b-turn in the receptor bound conformation of PBAN core, but is
not precise enough to provide evidence for the specific type of
b-turn [31].

Despite the conformational constraint imposed upon the cyclic
PK/PBAN analog cyclo[Asn1]LPK, it was found to retain 10% of the
pheromonotropic activity of the 33-residue Bom-PBAN-I in a
pheromonotropic bioassay in the silkworm B. mori [21], the same
percentage of activity retained by the linear C-terminal PBAN
hexapeptide. The analog cyclo[Asn1]LPK was also found to retain
significant bioactivity in several other PK/PBAN bioassays, includ-
ing hindgut contractile (cockroach L. maderae) [23], oviduct
contractile (cockroach L. maderae) [22], egg diapause induction
(silk worm B. mori) [22], and pupariation (flesh fly N. bullata) [36]
assay systems.

In order to provide more definitive evidence that a trans-Pro,
and a type I b-turn, represented the active conformation for the
PK/PBAN neuropeptide class, the PK/PBAN analog PK-Etz, incor-
porating a trans-Pro isostere, was evaluated in four diverse
PK/PBAN bioassay systems. These bioassays were the pheromone
biosynthesis assay in the moth H. peltigera, the melanization assay
in the Egyptian cotton leaf worm S. littoralis, the pupariation assay
in the fleshfly, N. bullata, and the hindgut myotropic assay in the
cockroach L. maderae. In PK-Etz, the peptide bond of the Pro is
replaced with a rigid double bond that locks in the trans orientation
[33] (Fig. 1). Analog PK-Etz demonstrated activity essentially
equivalent to parent PK/PBAN analogs of equal length in all four
bioassay systems. In the melanization, pupariation and hindgut
contractile assays, PK-Etz matched or approached the activity of
natural PK/PBANs isomorphs. Of particular note is the fact that PK-
Etz exceeded the efficacy (maximal response) of the natural
PBAN1-33 in the melanotropic bioassay by close to a factor of 2
(at 1 nmol).

The relatively potent agonist activity of PK-Etz provides
strong evidence that a trans-Pro represents an important
conformational aspect of the interaction of PBAN with its
receptor in the four disparate PK/PBAN bioassay systems, each
representing a different insect species. This conclusion, at least

Table 1
Sequences of the compounds evaluated in the four PK/PBAN bioassays.

Name Sequence

PBAN1-33 LADDMPATPADQEMYRQDPEQIDSRRTKYFSPRLa

1559 Ac-YFTPRLa

LPK pQTSFTPRLa

[4–8] LPK FTPRLa

PK-Etz Ac-YFS-C[trans-CH C]PRLa

Ac: acetyl; Etz: trans-Pro Etzkorn mimetic component (see Fig. 1).

Table 2
Pupariation acceleration (Neobellieria bullata) and hindgut contractile (Leucophaea

maderae) activity of PK/PBAN analogs LPK [4–8]LPK and trans-Pro mimetic PK-Etz.

PK/PBAN Analogs Threshold

Pupariation

[pmoles]

Hindgut contraction

[10�8 M]a

LPK pQTSFTPRLa 0.3 [25] 0.1 � 0.05 [20]

[4–8] LPK FTPRLa 0.3 [25] 0.2 � 0.03 [20]

PK-Etz Ac-YFS-C[trans-CH C]PRLa 0.3 0.2 � 0.04

a Threshold concentrations for hindgut contractile activity in the table are

equivalent to 5, 10 and 10 pmol for LPK [4–8] LPK and PK-Etz, respectively.
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in the case of the melanotropic process, is further supported by
the activity profile of a PK/PBAN analog that incorporates a novel
dihydroimidazoline moiety, recently proposed as a trans-Pro
isostere [17].

Establishment of a trans-Pro orientation provides valuable
evidence for the identity of the active PK/PBAN conformation.
Three previous studies have led to the proposal of different
b-turn types (type I, type II and type I0) for the PK/PBAN core
region (as discussed above). Of these studies, only Nachman et al.
[21,23] used both a conformationally rigid PK/PBAN analog along
with aqueous solutions free of added organic solvents that
artificially promote the formation of secondary structure. Of note
is the fact that Wang et al. [32] admit that their observation of a
type II b-turn could have been the result of conformational
averaging of a type I b-turn (identified in the study by Nachman
et al.) and an extended conformation in the flexible analog used.
The type I b-turn proposed by Nachman et al. features a trans-Pro
that was clearly evident in the rigid, cyclic analog cyclo[Asn1]LPK
and has now been confirmed by the potent activity of PK-Etz,
which locks in a trans orientation with an alkene bond that is
unable to rotate. This finding is not consistent with a type
I0 b-turn proposed in the study by Clark and Prestwich [8] that
used the highly flexible HezPBAN, as this turn type features a cis-
Pro rather than a trans-Pro. The work described here not only
provides evidence for the orientation of Pro and core conforma-
tion for the interaction of PK/PBAN neuropeptides with receptors
associated with a broad range of PK/PBAN-regulated processes,
but also identifies a scaffold with which to design mimetic
analogs of this peptide class. Such analogs may provide leads in
the development of novel insect-specific, environmentally
favorable pest management agents capable of disrupting
PK/PBAN-regulated physiological systems.
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